Report

Introduction of AIS2100

- 1. New AIS2100 system
 - (1) Advanced H/W
- (2) Upgraded S/W algorithms
- 2. Testing result comparison (GE specimens)
- : AIS2000 and AIS2100

Prepared by

www.frontics.com

1. AIS2100 system

AIS2100, like AIS2000, is a portable indentation system for nondestructive evaluation of tensile properties. But AIS2100 comprises more precise hardware, upgraded algorithms and powerful attachments than AIS2000. It also gives more reliable testing results.

(1) Advanced H/W for user convenience and better repeatability

► Enhanced precision and data repeatability

AIS2100 made the following hardware improvements from AIS2000 for user satisfaction:

- High resolution
- Better data repeatability
- Stable data transmission (minimization of noise during data communications)

Model	AIS2000	AIS2100		
Maximum load	300 kgf	300 kgf		
Resolution (load/depth)	300 gf / 0.2 um	5.6 gf / 0.1 um		
Data acquisition rate	10/sec	100/sec		
Communication	RS-232C (serial port)	RS-422 (USB) / Wireless module		

► Maximum portability

AIS2100 enhanced portability for better efficient in-field applications.

AIS2000	AIS2100			
Main body	Main body			
Additional interface box	Interface module within main body			
Cable (3EA)	Wireless module or 1 cable			
Laptop PC (w/SW)	Laptop PC (w/SW)			

< AIS2100 hardware >

AIS2100 adds on items for quick and easy testing.

- Wireless communication module or one-line communication for system control
- Remote control function
- Direct system control and monitoring from LCD panel on top of main body
- Portable battery available (10 hr)

< Wireless communication >

< Remote control and LCD >

< Portable battery >

(2) Easy software

► Maximum portability

- Accurate evaluation of tensile properties based on advanced indentation theory
- No reference test or data needed for tensile properties evaluation
- Convenient configuration of experiment conditions in SW
- Hardness evaluation available (Vickers)

**** Comparisons of H/W specification: AIS2000 vs. AIS2100**

Mod	lel	AIS2000	AIS2100			
Size (weight)		180x180x470 mm (14 kg)	180x180x430 mm (14 kg)			
Maximum load		300 kgf	300 kgf			
Resolution (load / depth)		300 gf / 0.2 um	5.6 gf / 0.1 um			
Full stroke		20 mm	40 mm			
Loading rate		0.1~6 mm/min	0.05~60 mm/min			
Communication		RS-232C	RS-422/ wireless module			
Data acquis	sition rate	10/sec	100/sec			
Power	Adapter	AC 110 or 220V	AC 110~220V (free voltage)			
Power	Battery	none	Portable battery (10 hrs/ charge)			
Analysis	Standard	Laptop F	PC (w/SW)			
computer	Special	Rugged computer (optional)				
Indenter		WC spherical indenter				
		(dia. 0.5 / 1.0 mm)				
		Vickers, Rockwell C Indenter				
		Multicurve magnet	Multicurve magnet			
Attachment	Field	Flat magnet	Flat magnet			
		Lightweight mechanical chain	Lightweight mechanical chain			
tool (select or option)		U / V-block (¾~6 inch)	U -block (¾~6 inch)			
		dovetail slider	Multi-point dovetail slider			
Οριίση)	Laboratory	Precise X-Y axis stage				
	Laboratory	Various vises (plate/clamping jig)				

(2) Upgraded S/W algorithms

AIS2100 has the revised S/W for more accurate and reliable data results:

- Revision of contact area determination procedure considering pile-up effect dependent on indentation depth and work-hardening characteristic of a material
- Revision of yield strength determination procedure based on indentation-derived elastic modulus

Step 0 Determination of contact area

 $a \rightarrow a_c$

Step 1 Derivation of stress-strain points

$$\sigma = \frac{L}{\pi a^2} \frac{1}{\Psi}$$
, $\varepsilon = \frac{\alpha}{\sqrt{1 - (a/R)^2}} \frac{a}{R} = \alpha \tan \gamma$

Step 2 Determination of flow curve

$$\sigma = K\varepsilon^n$$
 for BCC-type materials $\sigma = A\varepsilon^{n_1} + B$ for FCC-type materials

Step 3 Determination of yield strength (3-1) and tensile strength (3-2)

$$\begin{split} \sigma_{_{y}} &= K(\epsilon_{_{y}} + b)^{_{n}} & \text{yield strength} \\ \sigma_{_{UTS}} &= Kn^{_{n}} & \text{tensile strength} \end{split}$$

The material in this report is confidential and any reproduction or redistribution is prohibited.

2. Testing result comparison (GE specimens): AlS2000 and AlS2100

► Testing result Comparison

Tensile data by GE			AIS2000 data		AIS2100 data						
Grade	ID	YS (MPa)	UTS (MPa)	Frontics YS (MPa)	Frontics UTS (MPa)	Frontics YS - Error(%) / STD	Frontics UTS - Error(%) / STD	Frontics YS (MPa)	Frontics UTS (MPa)	Frontics YS - Error(%) / STD	Frontics UTS - Error(%) / STD
В	20 144 5	312	466	380	484	22(18.5)	4(8.3)	308	482	-1(15.3)	3(3.7)
	20 105 9	322	467	351	453	9(5.8)	-3(5.6)	310	463	-4(12.8)	-1(11.5)
	20 139 22	349	464	345	451	-1(9.6)	-3(2.4)	325	471	-7(3.8)	2(1.5)
X52	20 112 11	384	525	409	519	7(6.81)	-1(3.9)	414	544	8(7.1)	4(3.2)
	20 106 9	402	511	388	510	-4(7.05)	0(4)	411	529	2(7.2)	4(3.4)
	20 165 7	422	486	385	484	-9(7.89)	0(3.8)	423	504	0(7)	4(8)
X60	16 75 5	426	532	385	507	-10(10.65)	-5(3.9)	406	531	-5(9.8)	0(6.1)
	16 76 8	459	564	413	516	-10(9.54)	-9(3.7)	442	548	-4(9.6)	-3(4.1)
X70	19 34 8	479	587	469	557	-2(6.95)	-5(6.8)	501	616	5(24.4)	5(2.7)
	19 40 6	501	596	464	579	-7(13.89)	-3(9.4)	488	613	-3(10.9)	3(4.5)